Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 22(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38667768

RESUMO

Metabolic disorders are increasingly prevalent conditions that manifest pathophysiologically along a continuum. Among reported metabolic risk factors, elevated fasting serum glucose (FSG) levels have shown the most substantial increase in risk exposure. Ultimately leading to insulin resistance (IR), this condition is associated with notable deteriorations in the prognostic outlook for major diseases, including neurodegenerative diseases, cancer risk, and mortality related to cardiovascular disease. Tackling metabolic dysfunction, with a focus on prevention, is a critically important aspect for human health. In this study, an investigation into the potential antidiabetic properties of a salmon protein hydrolysate (SPH) was conducted, focusing on its potential dipeptidyl peptidase-IV (DPP-IV) inhibition and direct glucose uptake in vitro. Characterization of the SPH utilized a bioassay-guided fractionation approach to identify potent glucoregulatory peptide fractions. Low-molecular-weight (MW) fractions prepared by membrane filtration (MWCO = 3 kDa) showed significant DPP-IV inhibition (IC50 = 1.01 ± 0.12 mg/mL) and glucose uptake in vitro (p ≤ 0.0001 at 1 mg/mL). Further fractionation of the lowest MW fractions (<3 kDa) derived from the permeate resulted in three peptide subfractions. The subfraction with the lowest molecular weight demonstrated the most significant glucose uptake activity (p ≤ 0.0001), maintaining its potency even at a dilution of 1:500 (p ≤ 0.01).


Assuntos
Inibidores da Dipeptidil Peptidase IV , Glucose , Hidrolisados de Proteína , Salmo salar , Animais , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/isolamento & purificação , Inibidores da Dipeptidil Peptidase IV/química , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/química , Glucose/metabolismo , Humanos , Dipeptidil Peptidase 4/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Proteínas de Peixes/farmacologia
2.
Front Physiol ; 14: 1301804, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38130476

RESUMO

Introduction: The skeletal muscle deformity of commercial chickens (Gallus gallus), known as the wooden breast (WB), is associated with fibrotic myopathy of unknown etiology. For future breeding strategies and genetic improvements, it is essential to identify the molecular mechanisms underlying the phenotype. The pathophysiological hallmarks of WB include severe skeletal muscle fibrosis, inflammation, myofiber necrosis, and multifocal degeneration of muscle tissue. The transmembrane proteoglycans syndecans have a wide spectrum of biological functions and are master regulators of tissue homeostasis. They are upregulated and shed (cleaved) as a regulatory mechanism during tissue repair and regeneration. During the last decades, it has become clear that the syndecan family also has critical functions in skeletal muscle growth, however, their potential involvement in WB pathogenesis is unknown. Methods: In this study, we have categorized four groups of WB myopathy in broiler chickens and performed a comprehensive characterization of the molecular and histological profiles of two of them, with a special focus on the role of the syndecans and remodeling of the extracellular matrix (ECM). Results and discussion: Our findings reveal differential expression and shedding of the four syndecan family members and increased matrix metalloproteinase activity. Additionally, we identified alterations in key signaling pathways such as MAPK, AKT, and Wnt. Our work provides novel insights into a deeper understanding of WB pathogenesis and suggests potential therapeutic targets for this condition.

3.
Front Nutr ; 10: 1192365, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37609488

RESUMO

Introduction: Successful long-term expansion of skeletal muscle satellite cells (MuSCs) on a large scale is fundamental for cultivating animal cells for protein production. Prerequisites for efficient cell expansion include maintaining essential native cell activities such as cell adhesion, migration, proliferation, and differentiation while ensuring consistent reproducibility. Method: This study investigated the growth of bovine MuSC culture using low-volume spinner flasks and a benchtop stirred-tank bioreactor (STR). Results and discussion: Our results showed for the first time the expansion of primary MuSCs for 38 days in a bench-top STR run with low initial seeding density and FBS reduction, supported by increased expression of the satellite cell marker PAX7 and reduced expression of differentiation-inducing genes like MYOG, even without adding p38-MAPK inhibitors. Moreover, the cells retained their ability to proliferate, migrate, and differentiate after enzymatic dissociation from the microcarriers. We also showed reproducible results in a separate biological benchtop STR run.

4.
Sci Rep ; 13(1): 12295, 2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516761

RESUMO

The world will be dependent on the development of novel feed ingredients from renewable sources to ensure sustainable growth of the aquaculture industry. Zooplankton like Calanus finmarchicus are viable new raw material candidates, as they have optimal nutrient profiles for aquatic animals and may be sustainably harvested in large volumes. In this study, the aim was to investigate if a protein hydrolysate of C. finmarchicus was able to influence the growth performance of fish. The effect of dietary inclusion of hydrolysates was tested in a feeding trial with European sea bass (Dicentrarchus labrax) juveniles, benchmarking calanus hydrolysate (CH) against commercially available hydrolysates. The diet with CH inclusion yielded increased growth, with significantly higher body weight than hydrolysates of sardine and tuna fish at the end of the trial. The observed growth-promoting effects were further examined using an in vitro model with skeletal muscle cells from Atlantic salmon. Through bioactivity experiments with muscle cells grown in media containing CH, low-molecular fractions were found to have the greatest positive effect on proliferation, viability, and expression of muscle-specific genes. Characterization of the most potent fraction revealed an abundance of small peptides, along with amino acids and marine metabolites associated with increased muscle growth.


Assuntos
Antifibrinolíticos , Bass , Copépodes , Animais , Fibras Musculares Esqueléticas , Aminoácidos , Aquicultura
6.
Front Nutr ; 10: 1336477, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38288061

RESUMO

Introduction: Avian eggshell membrane (ESM) is a complex extracellular matrix comprising collagens, glycoproteins, proteoglycans, and hyaluronic acid. We have previously demonstrated that ESM possesses anti-inflammatory properties in vitro and regulates wound healing processes in vivo. The present study aimed to investigate if oral intake of micronized ESM could attenuate skeletal muscle aging associated with beneficial alterations in gut microbiota profile and reduced inflammation. Methods: Elderly male C57BL/6 mice were fed an AIN93G diet supplemented with 0, 0.1, 1, or 8% ESM. Young mice were used as reference. The digestibility of ESM was investigated using the static in vitro digestion model INFOGEST for older people and adults, and the gut microbiota profile was analyzed in mice. In addition, we performed a small-scale pre-clinical human study with healthy home-dwelling elderly (>70 years) who received capsules with a placebo or 500 mg ESM every day for 4 weeks and studied the effect on circulating inflammatory markers. Results and discussion: Intake of ESM in elderly mice impacted and attenuated several well-known hallmarks of aging, such as a reduction in the number of skeletal muscle fibers, the appearance of centronucleated fibers, a decrease in type IIa/IIx fiber type proportion, reduced gene expression of satellite cell markers Sdc3 and Pax7 and increased gene expression of the muscle atrophy marker Fbxo32. Similarly, a transition toward the phenotypic characteristics of young mice was observed for several proteins involved in cellular processes and metabolism. The digestibility of ESM was poor, especially for the elderly condition. Furthermore, our experiments showed that mice fed with 8% ESM had increased gut microbiota diversity and altered microbiota composition compared with the other groups. ESM in the diet also lowered the expression of the inflammation marker TNFA in mice and in vitro in THP-1 macrophages. In the human study, intake of ESM capsules significantly reduced the inflammatory marker CRP. Altogether, our results suggest that ESM, a natural extracellular biomaterial, may be attractive as a nutraceutical candidate with a possible effect on skeletal muscle aging possibly through its immunomodulating effect or gut microbiota.

7.
Biomaterials ; 286: 121602, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35660866

RESUMO

A major challenge for successful cultured meat production is the requirement for large quantities of skeletal muscle satellite cells (MuSCs). Commercial microcarriers (MCs), such as Cytodex®1, enable extensive cell expansion by offering a large surface-to-volume ratio. However, the cell-dissociation step post cell expansion makes the cell expansion less efficient. A solution is using food-grade MCs made of sustainable raw materials that do not require a dissociation step and can be included in the final meat product. This study aimed to produce food-grade MCs from food industry by-products (i.e., turkey collagen and eggshell membrane) and testing their ability to expand bovine MuSCs in spinner flask systems for eight days. The MCs' physical properties were characterized, followed by analyzing the cell adhesion, growth, and metabolic activity. All MCs had an interconnected porous structure. Hybrid MCs composed of eggshell membrane and collagen increased the mechanical hardness and stabilized the buoyancy compared to pure collagen MCs. The MuSCs successively attached and covered the entire surface of all MCs while expressing high cell proliferation, metabolic activity, and low cell cytotoxicity. Cytodex®1 MCs were included in the study. Relative gene expression of skeletal muscle markers showed reduced PAX7 and increased MYF5, which together with augmented proliferation marker MKI67 indicated activated and proliferating MuSCs on all MCs. Furthermore, the expression pattern of cell adhesion receptors (ITGb5 and SDC4) and focal adhesion marker VCL varied between the distinct MCs, indicating different specific cell receptor interactions with the various biomaterials. Altogether, our results demonstrate that these biomaterials are promising prospects to produce custom-fabricated food-grade MCs intended to expand MuSCs.


Assuntos
Células Satélites de Músculo Esquelético , Animais , Materiais Biocompatíveis/química , Bovinos , Diferenciação Celular/fisiologia , Células Cultivadas , Indústria Alimentícia , Carne , Músculo Esquelético , Porosidade , Células Satélites de Músculo Esquelético/metabolismo
8.
Foods ; 10(3)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800851

RESUMO

Recently, two chicken breast fillet abnormalities, termed Wooden Breast (WB) and Spaghetti Meat (SM), have become a challenge for the chicken meat industry. The two abnormalities share some overlapping morphological features, including myofiber necrosis, intramuscular fat deposition, and collagen fibrosis, but display very different textural properties. WB has a hard, rigid surface, while the SM has a soft and stringy surface. Connective tissue is affected in both WB and SM, and accordingly, this study's objective was to investigate the major component of connective tissue, collagen. The collagen structure was compared with normal (NO) fillets using histological methods and Fourier transform infrared (FTIR) microspectroscopy and imaging. The histology analysis demonstrated an increase in the amount of connective tissue in the chicken abnormalities, particularly in the perimysium. The WB displayed a mixture of thin and thick collagen fibers, whereas the collagen fibers in SM were thinner, fewer, and shorter. For both, the collagen fibers were oriented in multiple directions. The FTIR data showed that WB contained more ß-sheets than the NO and the SM fillets, whereas SM fillets expressed the lowest mature collagen fibers. This insight into the molecular changes can help to explain the underlying causes of the abnormalities.

9.
Front Cell Dev Biol ; 8: 730, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850844

RESUMO

BACKGROUND: Extracellular matrix (ECM) remodeling is essential for skeletal muscle development and adaption in response to environmental cues such as exercise and injury. The cell surface proteoglycan syndecan-4 has been reported to be essential for muscle differentiation, but few molecular mechanisms are known. Syndecan-4-/- mice are unable to regenerate damaged muscle, and display deficient satellite cell activation, proliferation, and differentiation. A reduced myofiber basal lamina has also been reported in syndecan-4-/- muscle, indicating possible defects in ECM production. To get a better understanding of the underlying molecular mechanisms, we have here investigated the effects of syndecan-4 genetic ablation on molecules involved in ECM remodeling and muscle growth, both under steady state conditions and in response to exercise. METHODS: Tibialis anterior (TA) muscles from sedentary and exercised syndecan-4-/- and WT mice were analyzed by immunohistochemistry, real-time PCR and western blotting. RESULTS: Compared to WT, we found that syndecan-4-/- mice had reduced body weight, reduced muscle weight, muscle fibers with a smaller cross-sectional area, and reduced expression of myogenic regulatory transcription factors. Sedentary syndecan-4-/- had also increased mRNA levels of syndecan-2, decorin, collagens, fibromodulin, biglycan, and LOX. Some of these latter ECM components were reduced at protein level, suggesting them to be more susceptible to degradation or less efficiently translated when syndecan-4 is absent. At the protein level, TRPC7 was reduced, whereas activation of the Akt/mTOR/S6K1 and Notch/HES-1 pathways were increased. Finally, although exercise induced upregulation of several of these components in WT, a further upregulation of these molecules was not observed in exercised syndecan-4-/- mice. CONCLUSION: Altogether our data suggest an important role of syndecan-4 in muscle development.

10.
Food Funct ; 11(9): 7946-7959, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32832941

RESUMO

Dietary polyphenols are subjected, following ingestion, to an extensive metabolism, and the molecules that act at the cellular and tissue level will be, most likely, metabolites rather than native polyphenols. The mechanisms behind the positive effects exerted by polyphenols are not yet completely elucidated, since most in vitro studies use unmetabolised polyphenols rather than the metabolites present in the body. The aim of this study was to investigate and compare the potential effect of phenolic metabolites on the immune response using U937 monocyte and THP-1 macrophage cell cultures. Of the 16 metabolites tested, urolithins (Uro), and Uro A, in particular were the most potent, showing a modest increase in basal NF-κB activity and a reduction in lipopolysaccaride (LPS)-induced NF-κB activity, gene expression and secretion of pro-inflammatory cytokines. Protocatechuic acid and its sulfate/glucuronide metabolites reduced LPS-induced NF-κB activity, but not IL-6 and TNF-α cytokine secretion. Interestingly, both ellagic acid and its metabolite Uro A had immunomodulating effects, although they regulated the immune response differently, and both reduced LPS-induced NF-κB activity in U937 cells. However, while Uro A dramatically reduced IL-6 and IL-10 mRNA expression, no effect could be observed with ellagic acid. In THP-1 cells, treatment with ellagic acid dramatically reduced the expression of Toll-like receptor 4, while Uro A had no effect. The dual role observed for Uro A, showing both a modest increase in basal NF-κB activity and a reduction in LPS-induced NF-κB activity, as well as a reduction in LPS-induced pro-inflammatory cytokine secretion, makes this metabolite particularly interesting for further studies in animals and humans.


Assuntos
Cumarínicos/farmacologia , Ácido Elágico/farmacologia , Imunidade/efeitos dos fármacos , Lipopolissacarídeos/efeitos adversos , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Animais , Citocinas/metabolismo , Humanos , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células THP-1 , Células U937
11.
Food Funct ; 10(3): 1619-1628, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30821796

RESUMO

Inhibition of dipeptidyl peptidase IV (DPP-IV) and stimulation of muscle glucose uptake are two of the key strategies for management of type-2-diabetes (T2D). In the present study, four protein hydrolysates generated by enzymatic hydrolysis of chicken by-product, i.e., mechanical chicken deboning residue, were evaluated for their DPP-IV inhibitory activity as well as their effect on glucose uptake by skeletal muscle cells. The DPP-IV inhibitory assay was performed at two concentrations (1000 µg mL-1 and 10 µg mL-1) for the crude chicken protein hydrolysates. The hydrolysate with the highest DPP-IV inhibition was selected for preparative-scale fractionation using size-exclusion chromatography (SEC). The SEC fractions were tested for DPP-IV inhibitory activity as well as their effect on glucose uptake and metabolic activity of skeletal muscle cells. The muscle cells were treated with the SEC fractions and glucose uptake was measured based on luminescence detection of 2-deoxyglucose-6-phosphate (2DG6P). A fraction with peptides in the lower molecular weight range was shown to promote glucose uptake and to inhibit DPP-IV. Further chromatographic fractionation followed by inhibition assaying of the most potent SEC fraction led to isolation of five refined peptide fractions with more than 80% DPP-IV inhibition, which were subsequently analyzed with LC-HRMS/MS. This led to identification of 14 peptides as potential DPP-IV inhibitors from protein hydrolysates of mechanical chicken deboning residue.


Assuntos
Galinhas , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Peptídeos/farmacologia , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Animais , Bovinos , Células Cultivadas , Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV/química , Glucose/metabolismo , Peptídeos/química , Células Satélites de Músculo Esquelético/metabolismo
12.
PLoS One ; 13(4): e0195432, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29617432

RESUMO

Skeletal muscle function is highly dependent on the ability to regenerate, however, during ageing or disease, the proliferative capacity is reduced, leading to loss of muscle function. We have previously demonstrated the presence of vitamin K2 in bovine skeletal muscles, but whether vitamin K has a role in muscle regulation and function is unknown. In this study, we used primary bovine skeletal muscle cells, cultured in monolayers in vitro, to assess a potential effect of vitamin K2 (MK-4) during myogenesis of muscle cells. Cell viability experiments demonstrate that the amount of ATP produced by the cells was unchanged when MK-4 was added, indicating viable cells. Cytotoxicity analysis show that MK-4 reduced the lactate dehydrogenase (LDH) released into the media, suggesting that MK-4 was beneficial to the muscle cells. Cell migration, proliferation and differentiation was characterised after MK-4 incubation using wound scratch analysis, immunocytochemistry and real-time PCR analysis. Adding MK-4 to the cells led to an increased muscle proliferation, increased gene expression of the myogenic transcription factor myod as well as increased cell migration. In addition, we observed a reduction in the fusion index and relative gene expression of muscle differentiation markers, with fewer complex myotubes formed in MK-4 stimulated cells compared to control cells, indicating that the MK-4 plays a significant role during the early phases of muscle proliferation. Likewise, we see the same pattern for the relative gene expression of collagen 1A, showing increased gene expression in proliferating cells, and reduced expression in differentiating cells. Our results also suggest that MK-4 incubation affect low density lipoprotein receptor-related protein 1 (LRP1) and the low-density lipoprotein receptor (LDLR) with a peak in gene expression after 45 min of MK-4 incubation. Altogether, our experiments show that MK-4 has a positive effect on muscle cell migration and proliferation, which are two important steps during early myogenesis.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Vitamina K 2/metabolismo , Animais , Bovinos , Movimento Celular/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Colágeno/metabolismo , Expressão Gênica , L-Lactato Desidrogenase/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Masculino , Fibras Musculares Esqueléticas/metabolismo , Proteína MyoD/metabolismo , RNA Mensageiro/metabolismo , Receptores de LDL/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Vitamina K 2/administração & dosagem
13.
PLoS One ; 12(8): e0182928, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28792534

RESUMO

Muscle cells undergo changes post-mortem during the process of converting muscle into meat, and this complex process is far from revealed. Recent reports have suggested programmed cell death (apoptosis) to be important in the very early period of converting muscle into meat. The dynamic balance that occurs between anti-apoptotic members, such as Bcl-2, and pro-apoptotic members (Bid, Bim) helps determine whether the cell initiates apoptosis. In this study, we used primary bovine skeletal muscle cells, cultured in monolayers in vitro, to investigate if apoptosis is induced when oxygen is removed from the growth medium. Primary bovine muscle cells were differentiated to form myotubes, and anoxia was induced for 6h. The anoxic conditions significantly increased (P<0.05) the relative gene expression of anti- and pro-apoptotic markers (Aif, Bcl-2, Bid and Bim), and the PARK7 (P<0.05) and Grp75 (Hsp70) protein expressions were transiently increased. The anoxic conditions also led to a loss of mitochondrial membrane potential, which is an early apoptotic event, as well as cytochrome c release from the mitochondria. Finally, reorganization and degradation of cytoskeletal filaments occurred. These results suggest that muscle cells enters apoptosis via the intrinsic pathway rapidly when available oxygen in the muscle diminishes post-mortem.


Assuntos
Apoptose/fisiologia , Bovinos/metabolismo , Hipóxia Celular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Animais , Western Blotting , Sobrevivência Celular , Células Cultivadas , Citocromos c/metabolismo , Imunofluorescência , Expressão Gênica , Produtos da Carne , Potencial da Membrana Mitocondrial/fisiologia , Microscopia de Fluorescência , Fibras Musculares Esqueléticas/patologia , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Técnicas de Cultura de Tecidos
15.
Top Curr Chem (Cham) ; 375(3): 53, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28466455

RESUMO

Large volumes of protein-rich residual raw materials, such as heads, bones, carcasses, blood, skin, viscera, hooves and feathers, are created as a result of processing of animals from fisheries, aquaculture, livestock and poultry sectors. These residuals contain proteins and other essential nutrients with potentially bioactive properties, eligible for recycling and upgrading for higher-value products, e.g. for human, pet food and feed purposes. Here, we aim to cover all the important aspects of achieving optimal utilization of proteins in such residual raw materials, identifying those eligible for human consumption as co-products and for feed applications as by-products. Strict legislation regulates the utilization of various animal-based co- and by-products, representing a major hurdle if not addressed properly. Thorough understanding and optimization of all parts of the production chain, including conservation and processing, are important prerequisites for successful upgrading and industrial implementation of such products. This review includes industrially applied technologies such as freezing/cooling, acid preservation, salting, rendering and protein hydrolysis. In this regard, it is important to achieve stable production and quality through all the steps in the manufacturing chain, preferably supported by at- or online quality control points in the actual processing step. If aiming for the human market, knowledge of consumer trends and awareness are important for production and successful introduction of new products and ingredients.


Assuntos
Indústria de Processamento de Alimentos , Carne/análise , Proteínas/análise , Animais , Peixes , Humanos
16.
Differentiation ; 86(1-2): 13-22, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23933398

RESUMO

Primary muscle cell model systems from farm animals are widely used to acquire knowledge about muscle development, muscle pathologies, overweight issues and tissue regeneration. The morphological properties of a bovine primary muscle cell model system, in addition to cell proliferation and differentiation features, were characterized using immunocytochemistry, western blotting and real-time PCR. We observed a reorganization of the Golgi complex in differentiated cells. The Golgi complex transformed to a highly fragmented network of small stacks of cisternae positioned throughout the myotubes as well as around the nucleus. Different extracellular matrix (ECM) components were used as surface coatings in order to improve cell culture conditions. Our experiments demonstrated improved proliferation and early differentiation for cells grown on surface coatings containing a mixture of both glycosaminoglycans (GAGs) and fibrous proteins. We suggest that GAGs and fibrous proteins mixed together into a composite biomaterial can mimic a natural ECM, and this could improve myogenesis for in vitro cell cultures.


Assuntos
Proliferação de Células , Desmina/metabolismo , Glicosaminoglicanos/metabolismo , Desenvolvimento Muscular , Proteína MyoD/metabolismo , Mioblastos Esqueléticos/metabolismo , Animais , Bovinos , Desmina/genética , Matriz Extracelular/metabolismo , Complexo de Golgi/metabolismo , Proteína MyoD/genética , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/fisiologia , Miogenina/genética , Miogenina/metabolismo
17.
Carcinogenesis ; 33(5): 1031-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22436610

RESUMO

The oncoprotein ErbB3 is overexpressed in several human cancers, for example in pancreatic adenocarcinoma and in ovarian cancers, and ErbB3-containing heterodimers have been demonstrated to be potent signaling units in carcinogenesis. This especially applies to ErbB2-ErbB3 and epidermal growth factor receptor (EGFR)-ErbB3 heterodimers providing anti-apoptotic signaling. Relatively little is understood about the signaling of EGFR-ErbB3 heterodimers and especially about mechanisms involved in downregulation of ErbB3 from the plasma membrane. This is in contrast to EGFR homodimers, for which trafficking has been extensively characterized. In the present study, we have investigated mechanisms involved in endocytosis of ErbB3 in porcine aortic endothelial cells stably expressing either ErbB3 only or stably expressing ErbB3 and EGFR. Our data show that ErbB3 is endocytosed in the absence of added ligand, independently of its tyrosine phosphorylation state and in a clathrin-dependent manner. Functional EGFR-ErbB3 heterodimers were observed to be formed, and dimerization with ErbB3 was observed to negatively affect endocytosis of the EGFR.


Assuntos
Clatrina/metabolismo , Proteínas Oncogênicas/metabolismo , Receptor ErbB-3/metabolismo , Animais , Apoptose/fisiologia , Membrana Celular/metabolismo , Dimerização , Endocitose , Células Endoteliais/metabolismo , Receptores ErbB/metabolismo , Células HeLa , Hemeproteínas/metabolismo , Humanos , Ligantes , Fosforilação , Receptor ErbB-2/metabolismo , Transdução de Sinais/fisiologia , Suínos , Células Tumorais Cultivadas
18.
Exp Cell Res ; 317(13): 1804-16, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21635887

RESUMO

CIN85 has been demonstrated to interact with a number of proteins involved in endocytosis and intracellular sorting. However, the exact functional role of CIN85 in endocytosis remains unclear. We have investigated whether CIN85 plays a role in EGF-induced EGF receptor (EGFR) internalization, as previously suggested, or whether CIN85 is rather involved in endosomal sorting of the EGFR. When over-expressing a dominant negative interfering CIN85 mutant consisting of three SH3 domains only, we found that internalization of EGF was inhibited. However, when knocking down CIN85 by RNAi, the EGF-EGFR uptake appeared similar to in control cells. Furthermore, in CIN85 depleted cells, EGF-induced ubiquitination of the EGFR was decreased, and degradation of EGF-EGFR complexes was delayed. Our data further demonstrated that depletion of CIN85 increased the recycling of EGF, suggesting that CIN85 plays a role in endosomal sorting of the ubiquitinated EGFR. Our data also demonstrated that CIN85 was constitutively associated with Hrs, and this strengthens the hypothesis of a functional role of CIN85 in endosomal EGFR sorting.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Endossomos/metabolismo , Receptores ErbB/metabolismo , Ubiquitinação , Células Cultivadas , Fator de Crescimento Epidérmico/metabolismo , Células HeLa , Humanos , Proteínas Recombinantes/metabolismo
19.
J Agric Food Chem ; 53(23): 8874-80, 2005 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-16277378

RESUMO

We report the development of an oligonucleotide microarray for the simultaneous detection of six important cereal food plant species from the Poaceae based on the chloroplast trnL intron sequence. We used universal primers to amplify the trnL intron from wheat, rye, barley, oat, rice, and maize, followed by a cyclic labeling of oligonucleotides probes and subsequent hybridization to an oligonucleotide microarray. In single taxon analyses, positive signals were produced with a high signal-to-noise ratio. The assay also enabled the analysis of mixed samples. The results obtained for real food samples were in agreement with the ingredient labels, but positive results for grains not declared on the ingredients list were observed in three out of 10 samples, which indicates that the final products and/or the declared ingredients were probably botanically impure or contaminated. The combination of the sensitivity of a universal polymerase chain reaction with the specificity of the labeling reaction allows this protocol to be applied in routine analyses of food samples, as demonstrated by successful analysis of processed composite food products.


Assuntos
Análise de Alimentos , Análise de Sequência com Séries de Oligonucleotídeos , Poaceae/classificação , Poaceae/genética , DNA de Plantas/análise , Íntrons , Hibridização de Ácido Nucleico , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA